The Effect of Human Trampling Activity on a Soil Microbial Community at the Urban Forest Park

Author:

Liu Qianqian1,Li Wensui1,Nie Hui1,Sun Xiaorui1ORCID,Dong Lina2,Xiang Liu1,Zhang Jinchi1,Liu Xin1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing 210037, China

2. Zhongshan Cemetery Administration, Nanjing 210037, China

Abstract

Soil degradation resulting from human trampling in urban forest parks can negatively impact the taxonomic diversity and function of soil microbial communities. In this study, we established long-term, fixed large plots in Zijin Mountain Urban Forest Park in Nanjing, China, to assess the level of trampling pressure. Soil samples were collected from depths of 0–10 cm, 10–20 cm, and 20–30 cm for light trampling (LD), moderate trampling (MD), severe trampling (SD), extreme trampling (ED), and a no-trampling control (CK). The effects of different trampling pressures on soil were studied, including soil nutrient indices, microbial biomass, and the taxonomic diversity of fungi and bacteria. ANOVA and structural equation modeling (SEM) were employed to investigate the impacts of human trampling on the microbial community structure and function. The results indicated that soil organic carbon, ammonium, and acid phosphatase activity were the primary driving factors of microbial community change. Soil microbial diversity initially increased and then decreased with increasing trampling intensity. The changes in soil microbial function and classification were found to be associated with the intensity of trampling. Moderate trampling could enhance the diversity of the soil microbial community. The succession pattern of the fungi and bacteria communities was distinct, and the composition of the bacteria community remained relatively stable. Trampling impacts vegetation and soil structure, which then affects the structure and function of the microbial community. This study provides an essential foundation for the restoration of compacted soil in urban forest parks through targeted monitoring and management efforts.

Funder

Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province

Nanjing Construction System Scientific Research Project

Scientific Research Project of Baishanzu National Park

Jiangsu University Advantage Discipline Construction Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3