The Negative Effects of Tourist Trampling on the Soil Physical Properties and Microbial Community Composition in a Natural Oak Forest

Author:

Shang Qing1,Li Changfu1,Liu Yanchun2ORCID

Affiliation:

1. Yellow River Conservancy Technical Institute, Kaifeng 475004, China

2. International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China

Abstract

Tourist trampling is a serious disturbance affecting the soil structure and microbial community in forests. However, it is still unclear whether the response of soil microorganisms to trampling is attributed to the alterations in soil physical (soil bulk density and total porosity) or soil chemical (total nitrogen and soil organic carbon) properties. To determine the response and mechanism of soil microbial community composition to tourist trampling, we conducted a field experiment including four levels of trampling intensity (control, mild, moderate, and severe) at the Baotianman forest ecotourism area. With increasing trampling intensity, soil bulk density showed a substantially increasing pattern, whereas soil total porosity, total nitrogen, and soil organic carbon showed a decreasing trend. Compared to the insignificant change under mild trampling, moderate and severe trampling significantly decreased soil bacterial PLFAs (phospholipid fatty acids) by 46.6% and 57.5%, and fungal PLFAs by 36.3% and 61.5%, respectively. Severe trampling showed a significantly negative effect (−4.37%) on the proportion of soil bacterial PLFAs. Changes in soil bulk density and porosity induced by trampling, rather than total nitrogen and soil organic carbon, played a greater role in regulating soil microbial community composition. These findings suggest that soil microbial community composition and biomass are significantly influenced by the changes in soil texture and aeration conditions caused by tourist trampling.

Funder

National Natural Science Foundation of China

the Project of Science and Technology of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3