Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES

Author:

Radnaeva Larisa D.,Bazarzhapov Tcogto Zh.ORCID,Shiretorova Valentina G.ORCID,Zhigzhitzhapova Svetlana V.,Nikitina Elena P.ORCID,Dylenova Elena P.,Shirapova Galina S.,Budaeva Olga D.,Beshentsev Andrey N.,Garmaev Endon Zh.,Wang PingORCID,Dong Suocheng,Li Zehong,Tulokhonov Arnold K.

Abstract

The study of the transformation of substances in the basin of the Selenga River—the main tributary of Lake Baikal—under anthropogenic pressure and in the context of global climate change, is especially important for the lake, a globally important source of drinking water. The ecosystem of Lake Gusinoe is one of the key objects in the Selenga River basin that is exposed to significant anthropogenic pressure. This study presents the results of an analysis of water level changes and physicochemical parameters of the water mass of Lake Gusinoe; literature data from 1951 to 2017 and own data from 2017 to 2021. The water level in the lake had depended on natural factors before the Gusinoozersk GRES was launched; however, since the plant has begun using the lake as a cooling pond, its level has actually been regulated by the economic entity. Over the years, there has been a significant increase in mineralization, sulfate, sodium, fluoride and organic matter fractions resistant to oxidation. Seasonal increases in iron and manganese concentrations in water were detected. Increased concentrations of nutrients and organic matter fractions resistant to oxidation were registered at the wastewater discharge sites. Heavy metals in the bottom sediments of Lake Gusinoe accumulate mainly in the silt of the deep zone of the lake. Plants growing in the zones of influence of the Gusinoozersk GRES and Gusinoozersk wastewater discharge accumulate the largest amount of metals.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3