Distribution of Heavy Metals in Water and Bottom Sediments in the Basin of Lake Gusinoe (Russia): Ecological Risk Assessment

Author:

Bazarzhapov Tcogto Zh.123ORCID,Shiretorova Valentina G.3ORCID,Radnaeva Larisa D.3,Nikitina Elena P.3ORCID,Bazarsadueva Selmeg V.3ORCID,Shirapova Galina S.3,Dong Suocheng12,Li Zehong12,Liu Shiqi1,Wang Ping12ORCID

Affiliation:

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia

Abstract

Fresh water scarcity is considered a significant component, and potentially one of the most critical, of global climate change. With the rapid development of industry, there is an increasing risk of freshwater contamination by heavy metals (HMs). The danger of HM pollution is also attributed to their accumulation, which can subsequently become a source of secondary pollution in aquatic environments. In the Lake Gusinoe basin, located in Russia, concentrations of HMs were measured in both water and bottom sediments within the lake area, as well as in inflowing and outflowing watercourses. Ecological risk indices were also calculated for the Gusinoe basin. Our results showed that the average concentrations of Fe, Zn, Cr, Ni, Cd, and Pb in the water did not exceed the maximum allowable concentrations (MACs) set by Russian national standards and WHO standards, while the concentrations of Mn and Cu exceeded the corresponding MACs during winter, spring, and autumn possibly due to decomposition of aquatic vegetation and influx from groundwater sources. The average concentrations of the investigated HMs in the BSs did not exceed the background values. The water hazard index indicated a low risk for all samples in the lake water area. For all BS samples, the geoaccumulation index (Igeo) and the Pollution Load Index (PLI) indicated low pollution levels, while the values of the Enrichment Factor (EF) and the Contamination Factor (CF) indicated moderate pollution in the central part of the lake. The Ecological Risk Factor (Er) for Cu in BSs at points near major settlements and in the Tel River indicated moderate pollution. The Potential Ecological Risk Index (RI) in all investigated BS samples indicated a low risk of contamination.

Funder

Key Collaborative Research Program of the Alliance of International Science Organizations

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3