The Design of Sustainable City Multi-Floor Manufacturing Processes Under Uncertainty in Supply Chains

Author:

Dzhuguryan TygranORCID,Deja AgnieszkaORCID,Wiśnicki BoguszORCID,Jóźwiak ZofiaORCID

Abstract

The application of multi-floor manufacturing (MFM) in huge cities is related to the rational use of urban areas and the solution to traffic problems. The operation of the city MFM clusters depends on the efficiency of production and transport management considering technical, economic, environmental, and other factors. The primary goal of this paper was to identify and analyze the drivers of sustainable supply chains (SSCs) that influence or encourage the design of sustainable processes in city MFM clusters under uncertainty in supply chains. This paper presents an SSC performance model for city MFM clusters under uncertainty. The proposed model is universal and is based on material flow analysis (MFA) methodology. The presented analysis helps to determine the conditions for rhythmic deliveries with the use of the multi-IRTs. The coefficients of rhythmic deliveries for multiple intelligent reconfigurable trolleys (IRTs) and the capacity loss of freight elevators allow us to periodically assess the sustainability processes in city MFM clusters related to the flow materials. These assessments are the basis for the decision-making and planning of SSCs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference68 articles.

1. Economics of Agglomeration: Cities, Industrial Localization, and Globalization, Cambridge, Massachusetts;Fujita,2002

2. Why do cultural industries cluster? Localization, urbanization, products and projects;Lorenzen,2013

3. Towards the Re-Industrialization of Europe: A Concept for Manufacturing for 2030;Westkämper,2014

4. Manufacturing facility location and sustainability: A literature review and research agenda

5. The optimal location of elevator for the multi-floor manufacturing environment;Huang;J. Sci. Technol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3