Smart Sustainable Production Management for City Multifloor Manufacturing Clusters: An Energy-Efficient Approach to the Choice of Ceramic Filter Sintering Technology

Author:

Gevorkyan EdwinORCID,Chmiel JarosławORCID,Wiśnicki BoguszORCID,Dzhuguryan TygranORCID,Rucki MirosławORCID,Nerubatskyi VolodymyrORCID

Abstract

The development of environmentally friendly technologies, including additive technologies, contributes to the formation of sustainable production in city multifloor manufacturing clusters (CMFMCs). This paper discusses an approach to the implementation of energy-intensive technological processes in such clusters using examples of the manufacturing of ceramic and metal–ceramic products. The manufacturing of ceramic and metal–ceramic products in high-temperature furnaces is associated with an increased electricity consumption. The use of modern ceramic micro- and nanopowders makes it possible to switch to more energy-saving technologies by reducing the sintering temperature and shortening the technological cycle. This requires the use of additional activating and inhibiting additives in the initial powder mixtures to obtain products with the necessary physical and mechanical properties. The purpose of this paper is to present a model and indicators to assess the energy efficiency of the choice of sintering technology of foam ceramic filters for smart sustainable production management within CMFMCs. The use of the proposed indicators for assessing the energy efficiency of sintering foam ceramic filters makes it possible to improve the technological process and reduce the completion time of its thermal cycle by 19%, and reduce the maximum heating temperature by 20% to 1350 °C. The adoption of a different oxide technological alternative and the use of the proposed model and indicators to assess the energy efficiency of the sintering technology of foam ceramic filters allows to choose less energy-intensive equipment and save up to 40% in electricity. The proposed model to assess the energy efficiency of the sintering technology of foam ceramic filters can be used to control their production under the power consumption limitations within the CMFMCs.

Funder

Maritime University of Szczecin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

1. Smart Sustainable City Manufacturing and Logistics: A Framework for City Logistics Node 4.0 Operations

2. Infrastructure and functions of a city logistics node for multi-floor manufacturing cluster;Dzhuguryan;Proceedings of the 8th International Scientific Conference CMDTUR,2018

3. Problems with the Implementation of Industry 4.0 in Enterprises from the SME Sector

4. Smart Sustainable Production and Distribution Network Model for City Multi-Floor Manufacturing Clusters

5. Development of alumina filtering ceramics using refractory water-soluble salt additives;Gevorkyan;Newsl. NTU KhPI,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3