Affiliation:
1. Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 14380, Mexico
2. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Abstract
Current weather monitoring systems often remain out of reach for small-scale users and local communities due to their high costs and complexity. This paper addresses this significant issue by introducing a cost-effective, easy-to-use local weather station. Utilizing low-cost sensors, this weather station is a pivotal tool in making environmental monitoring more accessible and user-friendly, particularly for those with limited resources. It offers efficient in-site measurements of various environmental parameters, such as temperature, relative humidity, atmospheric pressure, carbon dioxide concentration, and particulate matter, including PM 1, PM 2.5, and PM 10. The findings demonstrate the station’s capability to monitor these variables remotely and provide forecasts with a high degree of accuracy, displaying an error margin of just 0.67%. Furthermore, the station’s use of the Autoregressive Integrated Moving Average (ARIMA) model enables short-term, reliable forecasts crucial for applications in agriculture, transportation, and air quality monitoring. Furthermore, the weather station’s open-source nature significantly enhances environmental monitoring accessibility for smaller users and encourages broader public data sharing. With this approach, crucial in addressing climate change challenges, the station empowers communities to make informed decisions based on real-time data. In designing and developing this low-cost, efficient monitoring system, this work provides a valuable blueprint for future advancements in environmental technologies, emphasizing sustainability. The proposed automatic weather station not only offers an economical solution for environmental monitoring but also features a user-friendly interface for seamless data communication between the sensor platform and end users. This system ensures the transmission of data through various web-based platforms, catering to users with diverse technical backgrounds. Furthermore, by leveraging historical data through the ARIMA model, the station enhances its utility in providing short-term forecasts and supporting critical decision-making processes across different sectors.
Funder
Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference42 articles.
1. (2023, October 02). Effects|Facts—Climate Change: Vital Signs of the Planet, Available online: https://climate.nasa.gov/effects/.
2. United Nations (2023, October 02). What Is Climate Change?. Available online: https://www.un.org/en/climatechange/what-is-climate-change.
3. Lai, C. (2023, October 02). How Does Deforestation Affect the Carbon Cycle? Earth.Org. Available online: https://earth.org/how-does-deforestation-affect-the-carbon-cycle/.
4. US EPA (2023, October 02). Causes of Climate Change, Available online: https://www.epa.gov/climatechange-science/causes-climate-change.
5. US EPA (2023, October 02). Introduction to Indoor Air Quality, Available online: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献