Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams

Author:

Meenashisundaram Ganesh KumarORCID,Xu Zhengkai,Nai Mui Ling Sharon,Lu Shenglu,Ten Jyi Sheuan,Wei Jun

Abstract

High porosity (40% to 60%) 316L stainless steel containing well-interconnected open-cell porous structures with pore openness index of 0.87 to 1 were successfully fabricated by binder jetting and subsequent sintering processes coupled with a powder space holder technique. Mono-sized (30 µm) and 30% (by volume) spherically shaped poly(methyl methacrylate) (PMMA) powder was used as the space holder material. The effects of processing conditions such as: (1) binder saturation rates (55%, 100% and 150%), and (2) isothermal sintering temperatures (1000 ○C to 1200 ○C) on the porosity of 316L stainless steel parts were studied. By varying the processing conditions, porosity of 40% to 45% were achieved. To further increase the porosity values of 316L stainless steel parts, 30 vol. % (or 6 wt. %) of PMMA space holder particles were added to the 3D printing feedstock and porosity values of 57% to 61% were achieved. Mercury porosimetry results indicated pore sizes less than 40 µm for all the binder jetting processed 316L stainless steel parts. Anisotropy in linear shrinkage after the sintering process was observed for the SS316L parts with the largest linear shrinkage in the Z direction. The Young’s modulus and compression properties of 316L stainless steel parts decreased with increasing porosity and low Young’s modulus values in the range of 2 GPa to 29 GPa were able to be achieved. The parts fabricated by using pure 316L stainless steel feedstock sintered at 1200 ○C with porosity of ~40% exhibited the maximum overall compressive properties with 0.2% compressive yield strength of 52.7 MPa, ultimate compressive strength of 520 MPa, fracture strain of 36.4%, and energy absorption of 116.7 MJ/m3, respectively. The Young’s modulus and compression properties of the binder jetting processed 316L stainless steel parts were found to be on par with that of the conventionally processed porous 316L stainless steel parts and even surpassed those having similar porosities, and matched to that of the cancellous bone types.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3