Microstructure and Pore Characteristics of a Double-Layered Pore Structure Powder Filter Fabricated by the WPS Process

Author:

Lee Min-Jeong12,Kim Hyeon-Ju1,Kang Du-Hong3,Lee Jung Woo2ORCID,Yun Jung-Yeul1ORCID

Affiliation:

1. Metal Powder Department, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea

2. School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

3. ASFLOW Co., Ltd., Hwaseong 16648, Republic of Korea

Abstract

In order to supply high-purity process gas in the semiconductor manufacturing process, a gas filter is used to remove particles that may be contained in the gas. However, because the gas filters currently in use have simple pore structures, there is a need to increase filtration efficiency through the development of filters with complex pore structures. In this study, a metal powder filter with double-layered pores was manufactured using a Wet Powder Spraying process (WPS) to increase the filtering efficiency of gas filters used in semiconductor manufacturing. The effects of the mixing ratio of spherical-shape and flake-shape powders and the rolling process on the filter’s characteristics were investigated. The filter’s performance, microstructure, and surface roughness were evaluated by measuring porosity and gas permeability. The results showed that as the ratio of flake-shaped powder decreased, the thickness of the coating layer and the porosity of the filter decreased. Additionally, it was observed that as the rolling process progressed, the non-uniform pore structure was oriented parallel to the cross-section of the filter regardless of the mixing ratio. Measurements found that the gas permeability of the uncoated filter support was the highest, and that gas permeability decreased as the proportion of spherical powder increased regardless of the average particle size of the mixed powder. Lower gas permeability was observed in rolled samples. A filtration efficiency of LRV 3 or higher was confirmed.

Funder

Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3