Mineral Chemistry of Pyrochlore Supergroup Minerals from the Boziguoer Nb-Ta-Zr-Rb-REE Deposit, NW China: Implications for Nb Enrichment by Alkaline Magma Differentiation

Author:

Sun Zhenghao,Qin Kezhang,Mao Yajing,Tang Dongmei,Wang Fangyue,Evans Noreen J.,Zhou Qifeng

Abstract

Alkaline rocks are generally enriched in rare metals (e.g., Nb, Ta, and Zr) and rare earth elements (REE), but the key factors controlling Nb-Ta-REE enrichment remain unclear. The Boziguoer Nb (Ta-Zr-Rb-REE) deposit in Southwest Tianshan (northern margin of Tarim Basin) is China’s largest, with reserves of 0.32 Mt Nb2O5 and 0.02 Mt Ta2O5. It is an alkaline felsic complex 4.45 km in length and 0.5–1.3 km in width, composed of alkalic granite and syenite, which can be subdivided into syenite I and syenite II. The main minerals in each lithofacies are the same (albite, K-feldspar, quartz, arfvedsonite and aegirine). The Nb in the deposit is mainly hosted in pyrochlore supergroup minerals, ubiquitous in alkalic granite and syenite of the Boziguoer deposit. The wide variation in cations (Ca, Na, REE, U, Th) in the A-site further classifies the Boziguoer pyrochlore supergroup minerals as fluornatropyrochlore, fluorcalciopyrochlore and fluorkenopyrochlore. All Boziguoer pyrochlore supergroup minerals are Nb-rich and Ta-poor at the B-site and dominated by F at the Y-site. These cation occurrence illustrate a new mechanism of substitution in the Boziguoer pyrochlore supergroup minerals (2Ca2+ +Ti4+ +4Ta5+ = REE3+ +A-V + 5Nb5+, where A-V is the A-site vacancy). This substitution mechanism is different from that in the pyrochlore supergroup minerals from other rocks such as carbonatite and nepheline syenite, which are dominated by the replacement of Ba (Rb, Sr) with Ca+ Na + A-V. In addition, the substitution of REE (mainly La, Ce) for Ca in the Boziguoer pyrochlore supergroup minerals is likely a result of either REE enrichment or a change in the REE partition coefficient during the evolution of the alkaline magma. Both the pyrochlore supergroup minerals and their host rocks display negative large ion lithophile element (LILE; K, Rb, Sr, and Ba) anomalies, positive high-field-strength element (HFSE) anomalies and light rare earth element (LREE) enrichment with negative Eu anomalies. This is consistent with the crystallization of the pyrochlore supergroup minerals from the magma rather than from hydrothermal fluids, suggesting a magmatic origin. These findings indicate that the mechanisms of pyrochlore supergroup minerals crystallization in alkaline magma may be significantly different from those in carbonatite and nepheline syenite, and that magmatic differentiation processes may have played a role in the enrichment of the Boziguoer deposit by Nb.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference84 articles.

1. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources;Wang;Geol. China,2013

2. Critical metal mineral resources: Current research status and scientific issues;Zhai;Bull. Natl. Nat. Sci. Found. China,2019

3. High-technology metals in alkaline and carbonatitic rocks in Greenland: recognition and exploration

4. Pyrochlore-Group Minerals in the Beauvoir Peraluminous Leukogranite, Massif-Central, France;Ohnenstetter;Can. Miner.,1992

5. Nb AND Ta OXIDE MINERALS IN THE FONTE DEL PRETE GRANITIC PEGMATITE DIKE, ISLAND OF ELBA, ITALY

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3