Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China

Author:

Yin Rong12,Sun Xiaoming123ORCID,Wang Shengwei4,Wu Bin5

Affiliation:

1. School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China

2. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, Guangzhou 510275, China

3. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China

4. Chengdu Institute of Geology and Mineral Resources, China Geological Survey, Chengdu 610081, China

5. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

Abstract

Alkaline igneous rocks have become a potentially important source of Nb, except for the carbonatites. The metallogenetic mechanism of Nb during the magmatic-hydrothermal evolution of alkaline rocks remains ambiguous. From the perspective of Nb minerals, the mineral chemistry of pyrochlore supergroup minerals provides the mineralogical evidence for indicating the respective contributions of magma and hydrothermal fluids to Nb mineralization. In the Miyi County of the Panzhihua-Xichang (Pan-Xi) area, the central zone of the Permian Emeishan large igneous province (ELIP) in SW China, hundreds of Nb-Y-F mineralized pegmatites (NYF-type) are exposed. This study conducted in situ mineral chemistry analyses on four types of pyrochlores to elucidate the Nb mineralization process. Both Pcl-I and Pcl-II exhibit well-developed oscillatory zoning (OZ), representing magmatic pyrochlore formed through disequilibrium crystallization in an oscillatory environment. Pcl-III, with a homogeneous and less variable composition, is also considered of magmatic origin due to its coherent chemical evolution with Pcl-II. Pcl-IV is considered of hydrothermal origin based on its irregular zoning texture, extremely high Na2O contents, and compositional gap compared with magmatic types. The decrease in TiO2 contents, coupled with the increase in Na2O, F, and Nb2O5 contents from Pcl-I to Pcl-III and from the core to the rim of zoned Pcl-II, indicates that fractional crystallization facilitates the crystallization of albite and the enrichment of volatiles, as well as the precipitation of Nb from the early to late stages. During the magmatic-hydrothermal transition stage, the reductive, Na- and F-enriched fluid transports Nb more effectively, leading to further Nb enrichment in pyrochlore. Consequently, there are two-stage Nb mineralization processes associated with the magmatic-hydrothermal evolution in the Miyi pegmatite, with the primary magmatic ore assemblages being the dominant Nb mineralization, which may be a general model for the mineralization of NYF-type pegmatites.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3