Hydrodynamic Simulation of the Influence of Injection Flowrate Regulation on In-Situ Leaching Range

Author:

Zhang ChongORCID,Xie Tingting,Tan Kaixuan,Yao Yixuan,Wang Yaan,Li Chunguang,Li Yongmei,Zhang Ying,Wang Hui

Abstract

Reasonable control of the leaching range is one of the critical indicators of the in-situ leaching uranium mining process. However, there is currently no mature control technology. To verify and improve the current control technology of the leaching range in the industry, this work proposes an injection control mode for a small flow around the well-site and establishes a hydrodynamic model of the leaching range under eight different pumping and injection conditions by using the groundwater modeling system (GMS). The model calculation, range prediction, comparative analysis, and on-site SO42− and S isotope verification tests were carried out. Results show that with the change of liquid injection ratio, the area ratios of fixed pumping injection ratio (total pumping flowrate is greater than 0.3% of the total injection flowrate) and model leaching range under four pumping injection equilibrium conditions were 99.10%, 99.99%, 98.30%, and 97.95%, respectively. The farthest migration distance ratios of the leaching solution were 99.37%, 100%, 98.02%, and 97.58%, respectively. It is considered that the operation mode with a fixed pumping injection ratio has no noticeable control effect on the leaching range; selecting a reasonable proportion to regulate the flowrate of injection wells at different positions can effectively reduce the area of the groundwater flow field and realize the effective control of the leaching range. The research results are conducive to saving a lot of evaporation pool construction, land acquisition, human and material resource investment, and environmental policy pressure.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference35 articles.

1. Cause Analysis of Formation Damage during In-situ Leaching of Uranium. China Nuclear Society;Jiang;Proceedings of the 2009 Annual Meeting of China Nuclear Society,2009

2. In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics

3. Numerical simulation of uranium in-situ mining

4. Multiple Processes Coupling and Reaction Front Propagation during In-situ Leach Mining: 1. Theoretical Analyses;Tan;Uranium Min. Metall.,2005

5. Groundwater Restoration Following In-Situ Recovery (ISR) Mining of Uranium;Omar;Appl. Geo-Chem.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3