Dynamic Modeling of a Nonlinear Two-Wheeled Robot Using Data-Driven Approach

Author:

Khan Muhammad AseerORCID,Baig Dur-e-ZehraORCID,Ashraf Bilal,Ali Husan,Rashid JunaidORCID,Kim Jungeun

Abstract

A system identification of a two-wheeled robot (TWR) using a data-driven approach from its fundamental nonlinear kinematics is investigated. The fundamental model of the TWR is implemented in a Simulink environment and tested at various input/output operating conditions. The testing outcome of TWR’s fundamental dynamics generated 12 datasets. These datasets are used for system identification using simple autoregressive exogenous (ARX) and non-linear auto-regressive exogenous (NLARX) models. Initially the ARX structure is heuristically selected and estimated through a single operating condition. We conclude that the single ARX model does not satisfy TWR dynamics for all datasets in term of fitness. However, NLARX fitted the 12 estimated datasets and 2 validation datasets using sigmoid nonlinearity. The obtained results are compared with TWR’s fundamental dynamics and predicted outputs of the NLARX showed more than 98% accuracy at various operating conditions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on High-Precision Dynamic Modeling and Performance Evaluation of Inertially Stabilized Platforms;Applied Sciences;2024-07-12

2. D4W: Dependable Data-Driven Dynamics for Wheeled Robots;The Fifth International Conference on Distributed Artificial Intelligence;2023-11-30

3. Multi-Innovation Nesterov accelerated gradient parameter identification method for autoregressive exogenous models;Journal of Vibration and Control;2023-10-17

4. Modeling of Nonlinear SOEC Parameter System Based on Data-Driven Method;Atmosphere;2023-09-13

5. Wheeled Mobile Robot Modeling for Local Navigation Using System Identification;2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS);2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3