3D Graph-Based Individual-Tree Isolation (Treeiso) from Terrestrial Laser Scanning Point Clouds

Author:

Xi ZhouxinORCID,Hopkinson ChrisORCID

Abstract

Using terrestrial laser scanning (TLS) technology, forests can be digitized at the centimeter-level to enable fine-scale forest management. However, there are technical barriers to converting point clouds into individual-tree features or objects aligned with forest inventory standards due to noise, redundancy, and geometric complexity. A practical model treeiso based on the cut-pursuit graph algorithm was proposed to isolate individual-tree points from plot-level TLS scans. The treeiso followed the local-to-global segmentation scheme, which grouped points into small clusters, large segments, and final trees in a hierarchical manner. Seven tree attributes were investigated to understand the underlying determinants of isolation accuracy. Sensitivity analysis based on the PAWN index was performed using 10,000 parameter combinations to understand the treeiso’s parameter importance and model robustness. With sixteen reference TLS plot scans from various species, an average of 86% of all trees were detected. The mean intersection-over-union (mIoU) between isolated trees and reference trees was 0.82, which increased to 0.92 within the detected trees. Sensitivity analysis showed that only three parameters were needed for treeiso optimization, and it was robust against parameter variations. This new treeiso method is operationally simple and addresses the growing need for practical 3D tree segmentation tools.

Funder

Govt Alberta Environmental Protection

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3