Benchmarking Under- and Above-Canopy Laser Scanning Solutions for Deriving Stem Curve and Volume in Easy and Difficult Boreal Forest Conditions

Author:

Muhojoki Jesse1ORCID,Tavi Daniella1ORCID,Hyyppä Eric1ORCID,Lehtomäki Matti1ORCID,Faitli Tamás1ORCID,Kaartinen Harri1ORCID,Kukko Antero12ORCID,Hakala Teemu1ORCID,Hyyppä Juha12ORCID

Affiliation:

1. Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute FGI, The National Land Survey of Finland, Vuorimiehentie 5, FI-02150 Espoo, Finland

2. Department of Built Environment, School of Engineering, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland

Abstract

The use of mobile laser scanning for mapping forests has scarcely been studied in difficult forest conditions. In this paper, we compare the accuracy of retrieving tree attributes, particularly diameter at breast height (DBH), stem curve, stem volume, and tree height, using six different laser scanning systems in a managed natural boreal forest. These compared systems operated both under the forest canopy on handheld and unmanned aerial vehicle (UAV) platforms and above the canopy from a helicopter. The complexity of the studied forest sites ranged from easy to difficult, and thus, this is the first study to compare the performance of several laser scanning systems for the direct measurement of stem curve in difficult forest conditions. To automatically detect tree stems and to calculate their attributes, we utilized our previously developed algorithm integrated with a novel bias compensation method to reduce the overestimation of stem diameter arising from finite laser beam divergence. The bias compensation method reduced the absolute value of the diameter bias by 55–99%. The most accurate laser scanning systems were equipped with a Velodyne VLP-16 sensor, which has a relatively low beam divergence, on a handheld or UAV platform. In easy plots, these systems found a root-mean-square error (RMSE) of below 10% for DBH and stem curve estimates and approximately 10% for stem volume. With the handheld system in difficult plots, the DBH and stem curve estimates had an RMSE under 10%, and the stem volume RMSE was below 20%. Even though bias compensation reduced the difference in bias and RMSE between laser scanners with high and low beam divergence, the RMSE remained higher for systems with a high beam divergence. The airborne laser scanner operating above the forest canopy provided tree attribute estimates close to the accuracy of the under-canopy laser scanners, but with a significantly lower completeness rate for stem detection, especially in difficult forest conditions.

Funder

Academy of Finland

academy-funded research infrastructure grant “Measuring Spatiotemporal Changes in Forest Ecosystem”

European Union’s Horizon Europe FEROX project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3