Abstract
Despite their importance to ecosystem services, wetlands are threatened by pollution and development. Over the last few decades, a growing number of wetland studies employed remote sensing (RS) to scientifically monitor the status of wetlands and support their sustainability. Considering the rapid evolution of wetland studies and significant progress that has been made in the field, this paper constitutes an overview of studies utilizing RS methods in wetland monitoring. It investigates publications from 1990 up to the middle of 2022, providing a systematic survey on RS data type, machine learning (ML) tools, publication details (e.g., authors, affiliations, citations, and publications date), case studies, accuracy metrics, and other parameters of interest for RS-based wetland studies by covering 344 papers. The RS data and ML combination is deemed helpful for wetland monitoring and multi-proxy studies, and it may open up new perspectives for research studies. In a rapidly changing wetlands landscape, integrating multiple RS data types and ML algorithms is an opportunity to advance science support for management decisions. This paper provides insight into the selection of suitable ML and RS data types for the detailed monitoring of wetland-associated systems. The synthesized findings of this paper are essential to determining best practices for environmental management, restoration, and conservation of wetlands. This meta-analysis establishes avenues for future research and outlines a baseline framework to facilitate further scientific research using the latest state-of-art ML tools for processing RS data. Overall, the present work recommends that wetland sustainability requires a special land-use policy and relevant protocols, regulation, and/or legislation.
Subject
General Earth and Planetary Sciences
Reference189 articles.
1. Predicting Wetland Area and Water Depth of Ganges Moribund Deltaic Parts of India;Paul;Remote Sens. Appl. Soc. Environ.,2020
2. Berhane, T.M., Lane, C.R., Wu, Q., Autrey, B.C., Anenkhonov, O.A., Chepinoga, V.V., and Liu, H. (2018). Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory. Remote Sens., 10.
3. An Efficient Feature Optimization for Wetland Mapping by Synergistic Use of SAR Intensity, Interferometry, and Polarimetry Data;Mohammadimanesh;Int. J. Appl. Earth Obs. Geoinf.,2018
4. An Appraisal of Global Wetland Area and Its Organic Carbon Stock;Mitra;Curr. Sci.,2005
5. Lake Wetland Classification Based on an SVM-CNN Composite Classifier and High-Resolution Images Using Wudalianchi as an Example;Meng;J. Coast. Res.,2019
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献