Improved Dempster–Shafer Evidence Theory for Tunnel Water Inrush Risk Analysis Based on Fuzzy Identification Factors of Multi-Source Geophysical Data

Author:

Ding Yulin,Yang Binru,Xu Guangchun,Wang Xiaoyong

Abstract

Water inrush is one of the most important risk factors in tunnel construction because of its abruptness and timeliness. Various geophysical data used in actual construction contain useful information related to groundwater development. However, the existing approaches with such data from multiple sources and sensors are generally independent and cannot integrate this information, leading to inaccurate projections. In addition, existing tunnel advanced geological forecast reports for risk projections interpreted by human operators generally contain no quantitative observations or measurements, but only consist of ambiguous and uncertain qualitative descriptions. To surmount the problems above, this paper proposes a tunnel water inrush risk analysis method by fusing multi-source geophysical observations with fuzzy identification factors. Specifically, the membership function of the fuzzy set is used to solve the difficulty in determining the basic probability assignment function in the improved Dempster–Shafer evidence theory. The prediction model of effluent conditions fuses seismic wave reflection data, ground penetrating radar data, and transient electromagnetic data. Therefore, quantitative evaluations of the effluent conditions are achieved, including the strand water, linear water, seepage and dripping water, and anhydrous. Experimental evaluations with a typical tunnel section were conducted, in which the state of the groundwater from a series of geological sketch reports in this sectionpaper were used as ground truth for verification. The experimental results revealed that the proposed method not only has high accuracy and robustness but also aligns well with different evidence effectively that generally contradicts manual interpretation reports. The results from 12 randomly selected tunnel sections also demonstrate the generalization abilities of the proposed method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Challenges and technological breakthroughs in tunnel construction in China;Chen;China J. Highw. Transp.,2020

2. Safety risk management of underground engineering in China: Progress, challenges and strategies;Qian;J. Rock Mech. Geotech. Eng.,2016

3. Evaluation of groundwater effects on tunnel engineering in loess;Sun;Bull. Eng. Geol. Environ.,2021

4. Statistical analysis of major tunnel construction accidents in China from 2010 to 2020;Zhu;Tunn. Undergr. Space Technol.,2022

5. An overview of ahead geological prospecting in tunneling;Li;Tunn. Undergr. Space Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3