A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples

Author:

Peng Cheng,Zhang Shuting,Li Changyun

Abstract

Aiming at the problems of low fault diagnosis accuracy caused by insufficient samples and unbalanced data sample distribution in bearing fault diagnosis, this paper proposes a fault diagnosis method for rolling bearings referencing conditional deep convolution adversarial generative networks (C−DCGAN) for efficient data augmentation. Firstly, the concept of conditional constraints is used to guide and improve the sample generation process of the original generative adversarial network, and specific constraints are added to the data generation model to perform a balanced expansion of muti-category fault data for small sample data sets. Secondly, aiming at the phenomena of training instability, gradient disappearance and gradient explosion in the imbalanced sample set, it is proposed to optimize the structure of the generative network by using the structure of self-defined skip connections and spectral normalization, while using the Wasserstein distance with penalty term instead of cross entropy. The function is used as the loss function of the generative adversarial network to improve the stable feature extraction ability of the generative network and the effect of the training process; in this way, simulation sample data with only a small variation from the real data distribution can be generated. Finally, the complete fault data set (after mixing the original data with sufficient fault category and sample number) and the generated data are input into the one-dimensional convolution neural network for fault diagnosis of rolling bearing. The experiment’s results show that the diagnosis method in this paper can improve the fault classification effect of rolling bearings by generating balanced and sufficient sample data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. A deep migration diagnosis method for mechanical equipment faults under big data;Lei;Chin. J. Mech. Eng.,2019

2. Generalized fine compound muti-scalesample entropy combined with manifold learning for rolling bearing fault diagnosis method;Wang;China Mech. Eng.,2020

3. Fault Diagnosis of Rolling Bearing Based on Multi Scale Convolution Strategy CNN;Zhang;J. Chongqing Univ. Technol. (Nat. Sci.),2020

4. Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs

5. Multitask Learning Based on Lightweight 1DCNN for Fault Diagnosis of Wheelset Bearings

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3