Abstract
Abstract
Mechanical fault diagnosis is crucial for ensuring the normal operation of mechanical equipment. With the rapid development of deep learning technology, the methods based on big data-driven provide a new perspective for the fault diagnosis of machinery. However, mechanical equipment operates in the normal condition most of the time, resulting in the collected data being imbalanced, which affects the performance of mechanical fault diagnosis. As a new approach for generating data, generative adversarial network (GAN) can effectively address the issues of limited data and imbalanced data in practical engineering applications. This paper provides a comprehensive review of GAN for mechanical fault diagnosis. Firstly, the development of GAN-based mechanical fault diagnosis, the basic theory of GAN and various GAN variants (GANs) are briefly introduced. Subsequently, GANs are summarized and categorized from the perspective of labels and models, and the corresponding applications are outlined. Lastly, the limitations of current research, future challenges, future trends and selecting the GAN in the practical application are discussed.
Funder
Natural Science Foundation of Hubei Province of China
Open Fund of Hubei Key Laboratory for Operation and Control of Cascaded Hydropower Station
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献