Abstract
The time-fractional heat conduction equation follows from the law of conservation of energy and the corresponding time-nonlocal extension of the Fourier law with the “long-tail” power kernel. The time-fractional heat conduction equation with the Caputo derivative is solved for an infinite plane with two external half-infinite slits with the prescribed heat flux across their surfaces. The integral transform technique is used. The solution is obtained in the form of integrals with integrand being the Mittag–Leffler function. A graphical representation of numerical results is given.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献