Affiliation:
1. Department of Mathematics Applications and Methods for Artificial Intelligence, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Abstract
This paper presents a numerical method for solving a two-dimensional subdiffusion equation with a Caputo fractional derivative. The problem considered assumes symmetry in both the equation’s solution domain and the boundary conditions, allowing for a reduction of the two-dimensional equation to a one-dimensional one. The proposed method is an extension of the fractional Crank–Nicolson method, based on the discretization of the equivalent integral-differential equation. To validate the method, the obtained results were compared with a solution obtained through the Laplace transform. The analytical solution in the image of the Laplace transform was inverted using the Gaver–Wynn–Rho algorithm implemented in the specialized mathematical computing environment, Wolfram Mathematica. The results clearly show the mutual convergence of the solutions obtained via the two methods.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献