Abstract
We discuss junction conditions across null hypersurfaces in a class of scalar–tensor gravity theories (i) with second-order dynamics, (ii) obeying the recent constraints imposed by gravitational wave propagation, and (iii) allowing for a cosmologically viable evolution. These requirements select kinetic gravity braiding models with linear kinetic term dependence and scalar field-dependent coupling to curvature. We explore a pseudo-orthonormal tetrad and its allowed gauge fixing with one null vector standing as the normal and the other being transversal to the hypersurface. We derive a generalization of the Lanczos equation in a 2 + 1 decomposed form, relating the energy density, current, and isotropic pressure of a distributional source to the jumps in the transverse curvature and transverse derivative of the scalar. Additionally, we discuss a scalar junction condition and its implications for the distributional source.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献