Abstract
A high-gain millimeter-wave patch array antenna is presented for unmanned aerial vehicles (UAVs). For the large-scale patch array antenna, microstrip lines and higher-mode surface wave radiations contribute enormously to the antenna loss, especially at the millimeter-wave band. Here, the element of a large patch array antenna is implemented with a substrate integrated waveguide (SIW) cavity-backed patch fed by the aperture-coupled feeding (ACF) structure. However, in this case, a large coupling aperture is used to create strongly bound waves, which maximizes the coupling level between the patch and the feedline. This approach helps to improve antenna gain, but at the same time leads to a significant level of back radiation due to the microstrip feedline and unwanted surface-wave radiation, especially for the large patch arrays. Using the SIW cavity-backed patch and stripline feedline of the ACF in the element design, therefore, provides a solution to this problem. Thus, a full-corporate feed 32 × 32 array antenna achieves realized gain of 30.71–32.8 dBi with radiation efficiency above 52% within the operational band of 25.43–26.91 GHz. The fabricated antenna also retains being lightweight, which is desirable for UAVs, because it has no metal plate at the backside to support the antenna.
Funder
Information & communications Technology Planning & Evaluation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference14 articles.
1. Sustainable interdependent networks from smart autonomous vehicle to intelligent transportation networks;Adnan,2019
2. Unmanned Aerial Vehicles: An Overview,2008
3. Review of Unmanned Aircraft System (UAS)
4. Millimeter-Wave for Unmanned Aerial Vehicles Networks: Enabling Multi-Beam Multi-Stream Communications;Huo;arXiv Prepr.,2018
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献