Deployment of IoT-Based Smart Demand-Side Management System with an Enhanced Degree of User Comfort at an Educational Institution

Author:

Charles Raja S.1,Vishnu Dharssini A. C.1ORCID,Jeslin Drusila Nesmalar J.2,Karthick T.3

Affiliation:

1. Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, Tamil Nadu, India

2. Department of Electrical and Electronics Engineering, Tamilnadu Government Polytechnic College, Madurai 625011, Tamil Nadu, India

3. Quantanics Techserv Pvt. Ltd., Madurai 625016, Tamil Nadu, India

Abstract

Nowadays, the Internet of Things (IoT) has a wide impact on many potential applications. The impact of IoT on performing demand-side management (DSM) in an Indian educational institution has not been researched in depth before. In this research work, an IoT-enabled SDSMS (Smart DSM System) has been deployed with the main objective of minimizing electricity tariff and also to tweak the quality of user comfort. It can be feasible by prioritizing available renewable PV solar energy during peak hours in an Indian educational institution. DSM has been performed using day-ahead load shifting and rescheduling the different classes of institutional loads by applying hybrid BPSOGSA (Binary Particle Swarm Optimization and Gravitational Search Algorithm). The BPSOGSA performance on DSM has been evaluated based on electricity tariff, peak demand range, and PAR and compared with the outcomes of both binary conventional algorithms BPSO and BGSA, respectively. The proposed method enhances the degree of user comfort (DUC) by tripping the operation of non-critical institutional loads. Simulation results obtained using MATLAB corroborate that BPSOGSA outperforms both BPSO and BGSA under both DSM scenarios. Before DSM, Peak demand, PAR, and Electricity tariffs were found to be 1855.47 kW, 4.1286, and $2030.67 while after DSM, they reduced to 1502.24 kW, 3.263, and $1314.40 respectively. This indicates a 35.273% reduction in electricity tariff, a 19.037% scale down in peak demand, and a 20.97% reduction in PAR. Finally, the real-time IoT-based SDSMS hardware is implemented at the Renewable energy laboratory for real monitoring of energy consumption via the Blynk application.

Funder

DST—SERB

Thiagarajar Research Fellowship

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3