Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review

Author:

Madani Seyed Saeed1ORCID,Ziebert Carlos1ORCID,Marzband Mousa2

Affiliation:

1. Institute of Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

2. Net Zero Industry Innovation Centre, Campus Masterplan, Teesside University, Middlesbrough TS1 3BA, UK

Abstract

To enhance our understanding of the thermal characteristics of lithium-ion batteries and gain valuable insights into the thermal impacts of battery thermal management systems (BTMSs), it is crucial to develop precise thermal models for lithium-ion batteries that enable numerical simulations. The primary objective of creating a battery thermal model is to define equations related to heat generation, energy conservation, and boundary conditions. However, a standalone thermal model often lacks the necessary accuracy to effectively anticipate thermal behavior. Consequently, the thermal model is commonly integrated with an electrochemical model or an equivalent circuit model. This article provides a comprehensive review of the thermal behavior and modeling of lithium-ion batteries. It highlights the critical role of temperature in affecting battery performance, safety, and lifespan. The study explores the challenges posed by temperature variations, both too low and too high, and their impact on the battery’s electrical and thermal balance. Various thermal analysis approaches, including experimental measurements and simulation-based modeling, are described to comprehend the thermal characteristics of lithium-ion batteries under different operating conditions. The accurate modeling of batteries involves explaining the electrochemical model and the thermal model as well as methods for coupling electrochemical, electrical, and thermal aspects, along with an equivalent circuit model. Additionally, this review comprehensively outlines the advancements made in understanding the thermal behavior of lithium-ion batteries. In summary, there is a strong desire for a battery model that is efficient, highly accurate, and accompanied by an effective thermal management system. Furthermore, it is crucial to prioritize the enhancement of current thermal models to improve the overall performance and safety of lithium-ion batteries.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3