MODELING THERMAL BEHAVIOR IN HIGH-POWER SEMICONDUCTOR DEVICES USING THE MODIFIED OHM’S LAW

Author:

Kımuya Alex1ORCID

Affiliation:

1. Meru University of Science and Technology

Abstract

This paper addresses the challenge of thermal management in high-power semiconductor devices, where increasing power densities and complex operating environments demand more accurate thermal prediction methods. Traditional approaches often rely on simplified models that do not account for the crucial factor of temperature-dependent resistance variations. This limitation leads to inaccurate device temperature predictions, potentially compromising device reliability. This work proposes a novel approach for thermal management by introducing the first empirical application of a Modified Ohm’s Law. This modified law incorporates an exponential term to account for the non-linear relationship between temperature, current, and resistance. The paper demonstrates through simulations and empirical validation that the Modified Ohm’s Law offers a more accurate representation of thermal behavior compared to the standard version. This translates to more precise predictions of device temperature, especially during periods of rapid temperature changes. The validation process goes beyond simply establishing the Modified Ohm’s Law. It provides valuable insights into the thermal dynamics of the device, allowing for the refinement of simulation parameters used to assess various cooling strategies. These strategies include simulating different heat sink geometries and materials, modifying airflow rates over the device’s surface, and exploring the impact of Thermal Interface Materials (TIMs) between the device and the heat sink. By incorporating these elements, the simulations provide a more comprehensive picture of the device’s thermal behavior under various operating conditions and cooling configurations. Ultimately, this paper not only advances the theoretical understanding of thermal management but also offers practical benefits. Through enabling more accurate thermal predictions, the Modified Ohm’s Law model paves the way for informed decision-making in device design and optimization.

Publisher

Omer Halisdemir Universitesi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3