Quantitative Analysis of Soil Cd Content Based on the Fusion of Vis-NIR and XRF Spectral Data in the Impacted Area of a Metallurgical Slag Site in Gejiu, Yunnan

Author:

Zhang Zhenlong1,Wang Zhe1,Luo Ying1,Zhang Jiaqian1,Feng Xiyang1,Zeng Qiuping1,Tian Duan1,Li Chao1,Zhang Yongde1,Wang Yuping2,Chen Shu1,Chen Li3

Affiliation:

1. College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China

2. Division of International Applied Technology, Yibin University, Yibin 644000, China

3. College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China

Abstract

Vis-NIR and XRF spectroscopy are widely used in monitoring heavy metals in soil due to their advantages of being fast, non-destructive, cost-effective, and non-polluting. However, when used individually, XRF and vis-NIR may not meet the accuracy requirements for Cd determination. In this study, we focused on the impact area of a non-ferrous metal smelting slag site in Gejiu City, Yunnan Province, fused the pre-selected vis-NIR and XRF spectra using the Pearson correlation coefficient (PCC), and identified the characteristic spectra using the competitive adaptive reweighted sampling (CARS) method. Based on this, a quantitative model for soil Cd concentration was established using partial least squares regression (PLSR). The results showed that among the four fusion spectral quantitative models constructed, the model combining vis-NIR spectral second-order derivative transformation and XRF spectral first-order derivative transformation (D2(vis-NIR) + D1(XRF)) had the highest coefficient of determination (R2 = 0.9505) and the smallest root mean square error (RMSE = 0.1174). Compared to the estimation models built using vis-NIR and XRF spectra alone, the average computational time of the fusion models was reduced by 68.19% and 63.92%, respectively. This study provides important technical means for real-time and large-scale on-site rapid estimation of Cd content using multi-source spectral fusion.

Funder

Ministry of Science and Technology of the People’s Republic of China

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Biological and Chemical Engineering Laboratory of Panzhihua College

Bureau of Science and Technology Panzhihua City

Bureau of Science and Technology Aba Qiang Tibetan Autonomous Prefecture

Southwest University of Science and Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3