Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition

Author:

Tian LingwenORCID,Liu Xiangnan,Zhang Biyao,Liu Ming,Wu Ling

Abstract

The use of remote sensing technology to diagnose heavy metal stress in crops is of great significance for environmental protection and food security. However, in the natural farmland ecosystem, various stressors could have a similar influence on crop growth, therefore making heavy metal stress difficult to identify accurately, so this is still not a well resolved scientific problem and a hot topic in the field of agricultural remote sensing. This study proposes a method that uses Ensemble Empirical Mode Decomposition (EEMD) to obtain the heavy metal stress signal features on a long time scale. The method operates based on the Leaf Area Index (LAI) simulated by the Enhanced World Food Studies (WOFOST) model, assimilated with remotely sensed data. The following results were obtained: (i) the use of EEMD was effective in the extraction of heavy metal stress signals by eliminating the intra-annual and annual components; (ii) LAIdf (The first derivative of the sum of the interannual component and residual) can preferably reflect the stable feature responses to rice heavy metal stress. LAIdf showed stability with an R2 of greater than 0.9 in three growing stages, and the stability is optimal in June. This study combines the spectral characteristics of the stress effect with the time characteristics, and confirms the potential of long-term remotely sensed data for improving the accuracy of crop heavy metal stress identification.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference53 articles.

1. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China

2. Heavy metal concentrations in soils and plants around Shizhuyuan Mining Area of Hunan Province;Lei;Acta Ecol. Sinica,2005

3. Mining urban soil pollution: Concentrations and patterns of heavy metals in the soils of Jinchang, China;Liao;Geogr. Res.,2006

4. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice

5. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3