A Review of Nano and Microscale Heat Transfer: An Experimental and Molecular Dynamics Perspective

Author:

Chatterjee Samyabrata1,Paras 1,Hu Han2,Chakraborty Monojit1ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

2. Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

Significant progress in the development of micro and nanoscale devices has been observed for the past three decades. The thermal transportation in these small-length scales varies significantly, and it is difficult to explain the underlying physics using the pre-existing theoretical formulations. When the bulk dimension of a system is comparable to or smaller than the mean free path (MFP) of the thermal carriers, classical theories, such as Fourier’s Law of heat conduction, are unable to accurately explain the system energy dynamics. The phenomena of energy transit and conversion at the micro to nanoscale is an interesting topic of research due to the substantial changes in behavior that are documented when compared to those at the macro size. This review article is broadly divided into two parts. Initially, the recent development in the field of molecular dynamic (MD) simulations is emphasized. Classical MD simulation is such a powerful tool that provides insight into the length scales where the conventional continuum approaches cease to be valid. Several examples of recent developments in the applicability of MD simulations for micro and nanoscale thermal transportation are reviewed. However, there are certain limitations of the MD simulations where the results deviate from experimental validation due to the lack of knowledge of the appropriate force fields. Hence the experimental development of micro and nanoscale thermal transportation processes is briefly reviewed and discussed in the other section of this review article.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3