Understanding Seepage in Levees and Exploring the Applicability of Using an Optical-Fiber Distributed Temperature System and Smoothing Technique as a Monitoring Method

Author:

Kang Woochul1ORCID

Affiliation:

1. Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10285, Republic of Korea

Abstract

This study aimed to experimentally understand the seepage mechanism in levees and evaluate the applicability of an optical-fiber distributed temperature system based on Raman-scattered light as a levee stability monitoring method. To this end, a concrete box capable of accommodating two levees was built, and experiments were conducted by supplying water evenly to both levees through a system equipped with a butterfly valve. Water-level and water-pressure changes were monitored every minute using 14 pressure sensors, while temperature changes were monitored using distributed optical-fiber cables. Levee 1, composed of thicker particles, experienced a faster water pressure change, and a corresponding temperature change was observed due to seepage. While the temperature change inside the levees was relatively smaller than external temperature changes, measurement fluctuations were significant. Additionally, the influence of external temperature and the dependence of temperature measurements on the levee position made intuitive interpretation challenging. Therefore, five smoothing techniques with different time intervals were examined and compared to determine their effectiveness in reducing outliers, elucidating temperature change trends and enabling the comparison of temperature changes at different positions. Overall, this study confirmed that the optical-fiber distributed temperature system combined with appropriate data-processing techniques can be more efficient than existing methods for understanding and monitoring levee seepage.

Funder

Korean Ministry of Science and ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3