Erosion Resistance Performance of Surface-Reinforced Levees Using Novel Biopolymers Investigated via Real-Scale Overtopping Experiments

Author:

Kang WoochulORCID,Ko Dongwoo,Kang Joongu

Abstract

This study evaluates a novel biopolymer-based material reinforcement method. A real-scale experiment minimizing flood disasters and economic losses incurred by the collapse of river levees due to overtopping was conducted. At the Andong River Experiment Center, lateral overflow was reproduced to induce levee collapse using sand, reinforced novel materials, and vegetation levees represented as cases 1, 2, and 3, respectively. The flow in the upstream and downstream areas was measured, and fluctuations in the lateral overflow discharge were calculated using an acoustic Doppler current profiler. To quantitatively verify the performance of this method, the collapse delay effect based on the surface loss rate of the levee slope was analyzed using image pixel analysis and three-dimensional point cloud modeling. Comparing the collapse delay effect of the new-material levee with that of the non-reinforced levees, we found a time delay of approximately 2.7–7 times from the occurrence of overtopping via the lateral flow to the end of the test. These results indicate that we can secure time for emergency repairs and operations by reinforcing the levee surface using the material proposed in this study. These research findings are expected to provide the basis for the proper design and construction of river levees.

Funder

Korea Agency for Infrastructure Technology Advancement

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference22 articles.

1. Prioritizing levee repairs: a case study for the city of Indianapolis, Indiana

2. The failed-levee effect: Do societies learn from flood disasters?

3. Experimental study on levee monitoring system for abnormality detection using fiber optic temperature sensing;Ahn;Ecol. Resilient Infrastruct.,2019

4. Floods from Dam Failures;Costa,1985

5. Earthen Embankment Breaching

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3