High-Resolution Spaceborne, Airborne and In Situ Landslide Kinematic Measurements of the Slumgullion Landslide in Southwest Colorado

Author:

Madson Austin,Fielding Eric,Sheng YongweiORCID,Cavanaugh Kyle

Abstract

The Slumgullion landslide, located in southwestern Colorado, has been active since the early 1700s and current data suggests that the most active portion of the slide creeps at a rate of ~1.5–2.0 cm/day. Accurate deformation measurement techniques are vital to the understanding of persistent, yet slow-moving landslides like the Slumgullion. The factors that affect slope movements at the Slumgullion are on-time scales that are well suited towards a remotely sensed approach to constrain the 12 different kinematic units that make up the persistent creeping landslide. We derive a time series of motion vectors (magnitude and direction) using subpixel offset techniques from very high resolution TerraSAR-X Staring Spotlight ascending/descending data as well as from a novel high-resolution amalgamation of airborne lidar and unmanned aerial systems (UAS) Structure from Motion (SfM) digital surface model (DSM) hillshades. Deformation rates calculated from the spaceborne and airborne datasets show high agreement (mean difference of ~0.9 mm/day), further highlighting the potential for the monitoring of ongoing mass wasting events utilizing unmanned aircraft systems (UAS) We compare pixel offset results from an 11-day synthetic aperture radar (SAR) pair acquired in July of 2016 with motion vectors from a coincident low-cost L1 only Global Navigation Satellite System (GNSS) field campaign in order to verify the remotely sensed results and to derive the accuracy of the azimuth and range offsets. We find that the average azimuth and range pixel offset accuracies utilizing the methods herein are on the order of 1/18 and 1/20 of their along-track and slant range focused ground pixel spacing values of 16.8 cm and 45.5 cm, respectively. We utilize the SAR offset time series to add a twelfth kinematic unit to the previously established set of eleven unique regions at the site of an established minislide within the main landslide itself. Lastly, we compare the calculated rates and direction from all spaceborne- and airborne-derived motion vectors for each of the established kinematic zones within the active portion of the landslide. These comparisons show an overall increased magnitude and across-track component (i.e., more westerly angles of motion) for the descending SAR data as compared to their ascending counterparts. The processing techniques and subsequent results herein provide for an improved knowledge of the Slumgullion landslide’s kinematics and this increased knowledge has implications for the advancement of measurement techniques and the understanding of globally distributed creeping landslides.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3