Affiliation:
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Abstract
The Slumgullion landslide is a large translational debris slide whose currently active part has likely been sliding for approximately 300 years. Its permanent motion and evolutionary processes have attracted the attention of many researchers. In order to study its mass wasting processes and evolution trend, the spatial–temporal displacement of the Slumgullion landslide was retrieved using an adaptive pixel offset tracking (POT) method with multi-track Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) images. Based on three-dimensional displacement and slope information, we then revealed the spatial–temporal distribution of surface mass depletion or accumulation in the landslide, which provides a new perspective to analyze the evolutionary processes of landslides. The results indicate that the Slumgullion landslide had a spatially variable displacement, with a maximum displacement of 35 m. The novel findings of this study mainly include two parts. First, we found that the surface mass accumulated in the toe of the landslide and depleted in the top and middle area during the interval, which could increase the resisting force and decrease the driving force of the Slumgullion landslide. This result is compelling evidence which indicates the Slumgullion landslide should eventually tend to be stable. Second, we found that the distribution of geological structures can well explain some of the unique mass wasting in the Slumgullion landslide. The larger local mass depletion in the landslide neck area verifies that the sharp velocity increase in this region is not only caused by the reduction in width but is also significantly affected by the local normal faults. In summary, this study provides an insight into the relation between the landslide motion, mass volume change, and geological structure. The results demonstrate the great potential of multi-track airborne SAR for displacement monitoring and evolutionary analysis of landslides.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献