Wideband TDoA Positioning Exploiting RSS-Based Clustering

Author:

Fuchs Andreas12ORCID,Wielandner Lukas12,Neunteufel Daniel23ORCID,Arthaber Holger23ORCID,Witrisal Klaus12ORCID

Affiliation:

1. Signal Processing and Speech Communication Laboratory, Graz University of Technology, 8010 Graz, Austria

2. Christian Doppler Laboratory for Location-Aware Electronic Systems, 1090 Vienna, Austria

3. Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, 1040 Vienna, Austria

Abstract

The accuracy of radio-based positioning is heavily influenced by a dense multipath (DM) channel, leading to poor position accuracy. The DM affects both time of flight (ToF) measurements extracted from wideband (WB) signals—specifically, if the bandwidth is below 100 MHz—as well as received signal strength (RSS) measurements, due to the interference of multipath signal components onto the information-bearing line-of-sight (LoS) component. This work proposes an approach for combining these two different measurement technologies, leading to a robust position estimation in the presence of DM. We assume that a large ensemble of densely-spaced devices is to be positioned. We use RSS measurements to determine “clusters” of devices in the vicinity of each other. Joint processing of the WB measurements from all devices in a cluster efficiently suppresses the influence of the DM. We formulate an algorithmic approach for the information fusion of the two technologies and derive the corresponding Cramér-Rao lower bound (CRLB) to gain insight into the performance trade-offs at hand. We evaluate our results by simulations and validate the approach with real-world measurement data. The results show that the clustering approach can halve the root-mean-square error (RMSE) from about 2 m to below 1 m, using WB signal transmissions in the 2.4 GHz ISM band at a bandwidth of about 80 MHz.

Funder

Austrian Federal Ministry of Labour and Economy

National Foundation for Research, Technology and Development

Christian Doppler Research association

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3