Abstract
The localization of internet of things (IoT) nodes in indoor scenarios with strong multipath channel components is challenging. All methods using radio signals, such as received signal strength (RSS) or angle of arrival (AoA), are inherently prone to multipath fading. Especially for time of flight (ToF) measurements, the low available transmit bandwidth of the used transceiver hardware is problematic. In our previous work on this topic we showed that wideband signal generation on narrowband low-power transceiver chips is feasible without any changes to existing hardware. Together with a fixed wideband receiving anchor infrastructure, this facilitates time difference of arrival (TDoA) and AoA measurements and allows for localization of the fully asynchronously transmitting nodes. In this paper, we present a measurement campaign using a receiver infrastructure based on software-defined radio (SDR) platforms. This proves the actual usability of the proposed method within the limitations of the bandwidth available in the ISM band at 2.4 GHz. We use the results to analyze the effects of possible anchor placement schemes and scenario geometries. We further demonstrate how this node-to-infrastructure-based localization scheme can be supported by additional node-to-node RSS measurements using a simple clustering approach. In the considered scenario, an overall positioning root-mean-square error (RMSE) of 2.19 m is achieved.
Funder
TU Wien Bibliothek
Christian Doppler Research Association
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献