Research on Simultaneous Measurement of Magnetic Field and Temperature Based on Petaloid Photonic Crystal Fiber Sensor

Author:

Yan Lili1,Wang Qichao1,Yin Bin12,Xiao Shiying3,Li Haisu3ORCID,Wang Muguang3ORCID,Liu Xingyu1,Wu Songhua12

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2. Laoshan Laboratory, Qingdao 266237, China

3. Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract

In this paper, we propose and design a magnetic field and temperature sensor using a novel petaloid photonic crystal fiber filled with magnetic fluid. The PCF achieves a high birefringence of more than 1.43 × 10−2 at the wavelength of 1550 nm via the design of material parameters, air hole shape and the distribution of the photonic crystal fiber. Further, in order to significantly improve the sensitivity of the sensor, the magnetic-fluid-sensitive material is injected into the pores of the designed photonic crystal fiber. Finally, the sensor adopts a Mach–Zehnder interferometer structure combined with the ultra-high birefringence of the proposed petaloid photonic crystal fiber. Magnetic field and temperature can be simultaneously measured via observing the spectral response of the x-polarization state and y-polarization state. As indicated via simulation analysis, the sensor can realize sensitivities to magnetic fields and temperatures at −1.943 nm/mT and 0.0686 nm/°C in the x-polarization state and −1.421 nm/mT and 0.0914 nm/°C in the y-polarization state. The sensor can realize the measurement of multiple parameters including temperature and magnetic intensity and has the advantage of high sensitivity.

Funder

Laoshan Laboratory Science and Technology Innovation Projects

National Natural Science Foundation of China

Youth Innovation Team Project of High School in Shandong Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3