Snapshot Multi-Wavelength Birefringence Imaging

Author:

Wang Shuang12,Han Xie1,Li Kewu23

Affiliation:

1. School of Data Science and Technology, North University of China, Taiyuan 030051, China

2. Engineering and Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, North University of China, Taiyuan 030051, China

3. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China

Abstract

A snapshot multi-wavelength birefringence imaging measurement method was proposed in this study. The RGB-LEDs at wavelengths 463 nm, 533 nm, and 629 nm were illuminated with circularly polarized light after passing through a circular polarizer. The transmitted light through the birefringent sample was captured by a color polarization camera. A single imaging process captured light intensity in four polarization directions (0°, 45°, 90°, and 135°) for each of the three RGB spectral wavelength channels, and subsequently measured the first three elements of Stokes vectors (S0, S1, and S2) after the sample. The birefringence retardance and fast-axis azimuthal angle were determined simultaneously. An experimental setup was constructed, and polarization response matrices were calibrated for each spectral wavelength channel to ensure the accurate detection of Stokes vectors. A polymer true zero-order quarter-wave plate was employed to validate measurement accuracy and repeatability. Additionally, stress-induced birefringence in a PMMA arch-shaped workpiece was measured both before and after the application of force. Experimental results revealed that the repeatability of birefringence retardance and fast-axis azimuthal angle was better than 0.67 nm and 0.08°, respectively. This approach enables multispectral wavelength, high-speed, high-precision, and high-repeatability birefringence imaging measurements through a single imaging session.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3