In Situ Corn Fiber Conversion for Ethanol Improvement by the Addition of a Novel Lignocellulolytic Enzyme Cocktail

Author:

Gao LeORCID,Zhang Dongyuan,Wu Xin

Abstract

Corn mashes have high-viscosity and high-sugar characteristics, which hinders yeast-fermentation efficiency and the ethanol yield increase. The excessive viscosity of corn mash is caused by the unutilized cellulose in corn kernel fiber. A novel lignocellulolytic enzymes cocktail with strong substrate specificity was prepared for high-viscosity, high-sugar corn mash. The in situ conversion of corn mashes with novel lignocellulolytic enzymes at the optimum cellulase dosage of 50 FPU/L resulted in about 12% increased ethanol concentration compared with the reference mash at different batch-fermentation scales. Adding the lignocellulolytic enzymes caused the greatest decrease in viscosity of corn mash and residual sugars by 40.9% and 56.3%, respectively. Simultaneously, the application of lignocellulolytic enzymes increased the value of the dried distiller’s grain with solubles (DDGS) by increasing the protein content by 5.51%. The in situ conversion of cellulose can decrease the fermentation broth viscosity and improve the rheological property, thereby improving the ethanol yield. With the same amount of material, the application of the novel enzymes cocktail can enhance the ethanol yield by more than 12%. A quarter of the ethanol yield increase was due to the further hydrolysis of starch, while three quarters to cellulose. Thus, this technology will increase the net revenue of bioethanol industrialization.

Funder

National Key Research and Development Program of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3