Bacterial Interactions with Nanoplastics and the Environmental Effects They Cause

Author:

Wang Rongyu1,Li Xiaodong1,Li Jing2,Dai Wei1,Luan Yaning1ORCID

Affiliation:

1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

2. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China

Abstract

Recently, there has been an increase in interest in the relationship between microorganisms and micro/nanoplastics. Particularly in natural environments, bacteria play an important role. For the ecological risk assessment of plastic particles, a proper understanding of how bacteria and plastic particles interact is crucial. According to a review of the research, the interaction between bacteria and nanoplastics is primarily caused by the interaction of nanoplastics with bacterial cell membranes and the induction of oxidative stress, which can have an impact on bacterial growth, lead to alterations in biofilm production, and induce bacterial gene mutations. On a more general scale, the high concentration of nanoplastics in the environment can increase the likelihood of organic pollution reaching microbial communities, altering the gene abundance of bacteria involved in material cycling, and decreasing the activity of bacterial functional enzymes, all of which can obstruct the cycling of environmental elements. The majority of current research relies on laboratory tests, and the modeled NPs employed may be considerably dissimilar from those found in the environment. In order to provide a guide for environmental management in the future, it will be necessary to analyze the effects of nanoplastics and bacteria on the environment under actual environmental conditions to help us comprehend the relationship between nanoplastics and bacteria and their ecological impacts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3