Aeration and Stirring in Yarrowia lipolytica Lipase Biosynthesis during Batch Cultures with Waste Fish Oil as a Carbon Source

Author:

Snopek Paulina,Nowak DorotaORCID,Zieniuk BartłomiejORCID,Fabiszewska AgataORCID

Abstract

Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3