Author:
Muysson Jared,Miller Laurianne,Allie Robert,Inglis Debra L.
Abstract
The high concentration of sugars in Icewine juice causes formidable stress for the fermenting Saccharomyces cerevisiae, causing cells to lose water and shrink in size. Yeast can combat this stress by increasing the internal concentration of glycerol by activating the high osmolarity glycerol response to synthesize glycerol and by actively transporting glycerol into the cell from the environment. The H+/glycerol symporter, Stl1p, has been previously characterized as being glucose repressed and inactivated, despite osmotic stress induction. To further investigate the role of Stl1p in Icewine fermentations, we developed a rapid single plasmid CRISPR-Cas9-based genome editing method to construct a strain of the common Icewine yeast, S. cerevisiae K1-V1116, that lacks STL1. In an Icewine fermentation, the ∆STL1 strain had reduced fermentation performance, and elevated glycerol and acetic acid production compared to the parent. These results demonstrate that glycerol uptake by Stl1p has a significant role during osmotically challenging Icewine fermentations in K1-V1116 despite potential glucose downregulation.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献