Biomass Deacetylation at Moderate Solid Loading Improves Sugar Recovery and Succinic Acid Production

Author:

Bukhari Nurul Adela1ORCID,Luthfi Abdullah Amru Indera23ORCID,Rahim Nuraishah Abd23,Nasrin Abu Bakar1ORCID,Sukiran Mohamad Azri1ORCID,Loh Soh Kheang1ORCID

Affiliation:

1. Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia

2. Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

3. Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

Biomass deacetylation with alkali prior to dilute acid pretreatment can be a promising approach to reduce the toxicity of the resulting hydrolysates and improve microbial fermentation. In this study, the effect of mild alkaline treatment of oil palm trunk (OPT) biomass on succinic acid production was evaluated. Deacetylation was carried out under different conditions: NaOH loadings (1–5%, w/v) and reaction times (15–90 min) at 100 °C. Deacetylation using 1% (w/v) NaOH within 15 min was sufficient to achieve a high acetic acid removal of 5.8 g/L with minimal sugar loss. Deacetylation under this condition resulted in a total sugar concentration of 55.8 g/L (18.0 g/L xylose and 37.8 g/L glucose), which was 37% higher than that of non-deacetylated OPT. Subsequently, succinic acid production using Actinobacillus succinogenes was also improved by 42% and 13% in terms of productivity and yield, respectively, at 10% (w/v) solid loading. This further demonstrated that mild alkaline treatment prior to dilute acid pretreatment is a promising strategy to improve succinic acid production. This study provides a facile approach for reducing the most influential inhibitory effect of acetic acid, and it can be applied to the exploitation of lignocellulosic biomass resources for succinic acid, biofuels, and/or other biochemical co-production in the future.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3