High-Efficient Production of Cellulosic Ethanol from Corn Fiber Based on the Suitable C5/C6 Co-Fermentation Saccharomyces cerevisiae Strain

Author:

Li Menglei1,Xu Fadi1,Zhao Yuping1,Sun Dongming1,Liu Jiao12,Yin Xiaolong1,Li Zailu1,Zhao Jianzhi1ORCID,Li Hongxing1,Bao Xiaoming1

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Shouguang Juneng Golden Corn Co., Ltd., Weifang 262700, China

Abstract

As a potential alternative to fossil-based fuels, cellulosic ethanol has attracted much attention due to its great benefit to energy sustainability and environmental friendliness. However, at present, the industrial competitiveness of cellulosic ethanol production is still insufficient compared with fossil-based fuels because of the higher costs. Expanding the range of lignocellulosic biomass may be a promising measure to promote the economical production of cellulosic ethanol. Corn fiber, a byproduct from the corn deep-processing, is an attractive feedstock for cellulosic ethanol production because of its rich carbohydrate content (generally exceeding 65% of dry weight), almost no transportation cost, and low lignin content allow it to be easily handled. This study first optimized the hydrolysis conditions, including the pretreatment and enzymolysis process based on dilute sulfuric acid, to achieve a high sugar yield. Then, the corn fiber hydrolysates obtained under different hydrolysis conditions were suitably fermented by different C5/C6 co-fermentation Saccharomyces cerevisiae, indicating that the hydrolysate at high solid loading (20%) needs to detoxification to a certain extent but not low solid loading (10%) to achieve high ethanol yield. Finally, the fermentation of the 20% solid loading hydrolysates with resin detoxification was performed in a 50 L bioreactor, achieving the sugar (glucose and xylose) metabolic rate of 2.24 g L −1 h −1 and ethanol yield of 92% of the theoretical value, which are the highest reported levels to date. This study provided a potential process route for cellulosic ethanol production from corn fiber from the perspective of the suitability between the upstream hydrolysis process and the downstream fermentation strain.

Funder

National Key Research and Development Project of China

Key R&D Project of Shandong Province

Key innovation Project of Qilu University of Technology

Shandong Provincial Technical Innovation Boot Program

Foundation of State Key Laboratory of Biobased Material and Green Papermaking of Qilu University of Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3