Homologous High-Level Lipase and Single-Cell Protein Production with Engineered Yarrowia lipolytica via Scale-Up Fermentation for Industrial Applications

Author:

Pan Dujie1,Dai Shuhan1,Jiao Liangcheng1,Zhou Qinghua1,Zha Genhan1,Yan Jinyong1,Han Bingnan2ORCID,Yan Yunjun1ORCID,Xu Li1ORCID

Affiliation:

1. Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China

2. School of Life Science, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China

Abstract

Yarrowia lipolytica is a promising feed additives. Here, we aimed to produce extracellular lipases and single-cell proteins (SCPs) at high levels simultaneously through fed-batch fermentation of engineered Y. lipolytica. The parameters for 500 mL shake flask cultures were optimized with a single factorial design. The resultant activity of lipase reached 880.6 U/mL after 84 h of fermentation, and 32.0 g/L fermentation broth of dry SCP was obtained at 120 h. To attain high SCP and lipase productivity, the high-density fed-batch fermentation of Y. lipolytica was scaled up in 10 L, 30 L, and 100 L fermentors. Using glycerol as the sole carbon source, the lipase activity peaked to 8083.3 U/mL, and the final dry SCP weight was 183.1 g/L at 94.6 h in 10 L fermentors. The extracellular lipase activity and SCP weight reached 11,100.0 U/mL and 173.3 g of dry SCP/L at 136 h in 30 L fermentors, respectively. Following 136 h of fed-batch fermentation, the extracellular lipase activity and dry SCP weight reached 8532.0 U/mL and 170.3 g/L in 100 L fermentors, respectively. A balance between the lipase secretion and growth of Y. lipolytica recombinant strain was achieved, indicating that an efficient fermentation strategy could promote further scale-up for industrial SCP production from engineered Y. lipolytica.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3