In Vitro Studies on Rumen Fermentation and Methanogenesis of Different Microalgae and Their Effects on Acidosis in Dairy Cows

Author:

Sucu Ekin1

Affiliation:

1. Department of Animal Science, Faculty of Agriculture, Bursa Uludağ University, Bursa 16059, Turkey

Abstract

Two in vitro studies were carried out on nonlactating dairy cows. Experiment 1 compared the methanogenesis and rumen fermentation parameters of various microalgae (Spirulina platensis, Chlorella vulgaris, and Schizochytrium spp.) and protein feeds (sunflower meal, soybean meal, and alfalfa hay) with monensin (MON). Rumen fermentation parameters were determined by an in vitro gas production system. Experiment 2 compared the ability of three microalgae to prevent acidosis. They were tested for 6 h against oat straw (100 mg) and MON (12 g/mL) to ameliorate ruminal acidosis caused by the addition of glucose (0.1 g/mL) as a fermentable carbohydrate with rumen fluid. In experiment 1, there were variations in the nutrient content of microalgae and protein sources. The dry matter content of the substrates ranged from 90 to 94%, and the organic matter content ranged from 82 to 88%, with Schizochytrium spp. having the highest. Protein content in algae and protein feeds ranged from 18–62% of dry matter (DM) to 16–48% DM, with S. platensis and C. vulgaris having the highest. The ether extract of Schizochytrium spp. (45.5% DM) was the highest of any substrate. In vitro rumen fermentation revealed that protein feeds increased the cumulative gas production at the highest level while MON caused a decrease. Ruminal pH was found to be higher in MON (6.95) and protein feeds (6.77–6.81) than in algae (6.37–6.50). In addition, in terms of metabolizable energy and digestible organic matter, protein feeds outperformed algae. The MON produced the least amount of methane (CH4) of any substrate, but Schizochytrium spp. demonstrated potential for CH4 reduction. In these groups, the decrease in CH4 production was accompanied by a decrease in total volatile fatty acids, acetate, and the acetate-to-propionate ratio, but an increase in propionate. Experiment 2 revealed MON as the most effective cure for controlling acidosis. However, C. vulgaris and Schizochytrium spp. had an effect on medium culture pH and demonstrated potential for acidosis prevention. This study found that algae can influence ruminal fermentation, have the potential to reduce CH4 production, and may reduce acidosis incidence rates. These assumptions, however, must be validated through in vivo studies.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Reference59 articles.

1. FAO (2017). The Future of Food and Agriculture—Trends and Challenges, Food and Agriculture Organization of the United Nations.

2. Biodiesel from microalgae;Chisti;Biotechnol. Adv.,2007

3. Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems;Efroymson;GCB Bioenergy,2017

4. Van Krimpen, M.M., Bikker, P., Van der Meer, I.M., Van der Peet-Schwering, C.M.C., and Vereijken, J.M. (2013). Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products, Wageningen UR Livestock Research.

5. Ferreira de Oliveira, A.P., and Bragotto, A.P.A. (2022). Microalgae-based products: Food and public health. Futur. Foods, 6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3