Strategies for Improving Lignocellulosic Butanol Production and Recovery in ABE Fermentation by Tailoring Clostridia Metabolic Perturbations

Author:

Kang Jin1,Dahman Yaser1ORCID

Affiliation:

1. Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

The present study investigates approaches to enhance bio-butanol production using lignocellulosic feedstock via supplements of metabolism perturbation. Traditionally, bio-butanol has been produced through chemical synthesis in a process known as acetone–butanol–ethanol (ABE) fermentation. Today, biochemical techniques involving bacterial strains capable of producing butanol are used with renewable sources of biomass. In this study, a stepwise approach was tailored for metabolic perturbations to maximize butanol production from pure sugar and lignocellulosic feedstock as a reference model fermentation. In preliminary investigations, impacts of CaCO3, furfural and methyl red on cell growth, sugar utilization, acid production and butanol production were evaluated in glucose feedstock and xylose feedstock. Following the preliminary investigation, with supplementation of 4 g/L CaCO3, the concentrations of furan derivatives (75% furfural and 25% HMF) and ZnSO4 were optimized for maximal butanol production from glucose and xylose feedstocks, respectively. A final experiment of butanol production was concluded using lignocellulosic feedstock hydrolysate normally containing 0.5~1.5 g/L furan derivatives under optimized conditions of 2 mg/L ZnSO4 and 4 g/L CaCO3. Under optimized conditions, butanol production exceeded 10 g/L in wheat straw hydrolysate, which was significantly higher than that obtained in the absence of ZnSO4 and CaCO3. As compared to the traditional lignocellulosic feedstock post-treatment method, the metabolic perturbations method shows advantages in terms of productivity and economics.

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3