The Effects of Selenium on Rumen Fermentation Parameters and Microbial Metagenome in Goats

Author:

Tian Xingzhou,Wang Xu,Li Jiaxuan,Luo Qingyuan,Ban Chao,Lu Qi

Abstract

This study evaluated the effects of selenium yeast (SY) on rumen fermentation parameters, rumen bacterial diversity, and expression pathways in goats. A total of 18 Qianbei-pockmarked weather goats from Guizhou (body weight, 25.75 ± 1.75 kg; mean ± standard deviation) were assigned to three groups according to a completely randomized design. Control group (CON, n = 6) kids were fed a basal diet, while treatment 1 (LS, n = 6) and treatment 2 (HS, n = 6) kids were fed a basal diet with 2.4 and 4.8 mg/kg SY, respectively. The feeding trial lasted for 74 days. The results indicated that the ruminal fluid of LS goats had significantly higher levels of propionic, caproic, isobutyric, and isovaleric acids than that of the CON. The levels of butyric and valeric acids were higher in the HS group than in the CON. The acetate:propionate ratio was significantly higher in the CON than in the two treatments. In addition, the inclusion of 2.4 mg/kg SY can lead to a significant decrease in the relative abundances of Euryarchaeota, and Proteobacteria at the phylum level compared to the CON and the HS groups. At the genus level, the LS group had a significant decrease in the relative abundance of Methanobrevibacter and Sarcina, whereas it could lead to a significant increase in the relative abundance of Clostridium in the ruminal fluid relative of the other two groups. At the species level, the LS group had a significant decrease in the relative abundance of bacterium_P3, bacterium_P201, and Sarcina_sp._DSM_11001 compared to the other groups. Moreover, the CON group had a significant decrease in the relative abundance of bacterium_P201 compared to the other two treatments. Compared to the CON, the addition of 2.4 mg/kg SY significantly enriched carbohydrate metabolism pathways in the ruminal fluid for gene encoding. Additionally, goats receiving SY showed a significant upregulation of glycosyl transferase and carbohydrate binding module pathways. These results suggest that dietary supplementation with SY modulates fermentation parameters, and it affects microbial diversity and microbial metagenome in the rumen of Qianbei-pockmarked goats.

Funder

Science and Technology Project of Guizhou Province

Youth Science and Technology Talent Development Project of Guizhou Province

State Key Laboratory of Animal Nutrition

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3