Efficient Production of Succinic Acid from Sugarcane Bagasse Hydrolysate by Actinobacillus succinogenes GXAS137

Author:

Qin Yan1,Li Yi1,Liang Ge1,Shen Naikun2,Xian Liang1,Wang Qingyan1

Affiliation:

1. National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China

2. School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530006, China

Abstract

Sugarcane bagasse (SCB) is an abundant agricultural waste, rich in cellulose and hemicellulose, that could be used as an ideal raw material for succinic acid (SA) production. A two-step chemical pretreatment, involving alkali extraction and alkaline hydrogen peroxide treatment, was utilized to treat SCB, followed by multi-enzyme hydrolysis to obtain a reducing sugar hydrolysate mainly composed of glucose and xylose. Optimization of the multi-enzyme hydrolysis of pretreated SCB resulted in a final reducing sugar concentration of 78.34 g/L. In order to enhance the bioconversion of SCB to SA and to reduce the production costs, the initial reducing sugar concentration, nitrogen source, and MgCO3 content were further optimized. The results demonstrated that the inexpensive corn steep liquor powder (CSLP) could be utilized as an alternative nitrogen source to yeast extract for the production of SA; and the optimal concentrations of initial reducing sugar, CSLP, and MgCO3 were 70 g/L, 18 g/L, and 60 g/L, respectively. When fed-batch fermentation was conducted in a 2 L stirred bioreactor, approximately 72.9 g/L of SA was produced, with a yield of 83.2% and a productivity of 1.40 g/L/h. The high SA concentration, yield, and productivity achieved in this study demonstrate the potential of SCB, an agricultural waste, as a viable alternative substrate for Actinobacillus succinogenes GXAS137 to produce SA. This lays a solid foundation for the resource utilization of agricultural waste and cost-effective industrial-scale production of SA in the future.

Funder

Natural Science Foundation of Guangxi Province

Science and Technology Program of Guangxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3