Study on the Operational Modes Using Both Growing and Resting Cells for Succinic Acid Production from Xylose Kinetic Modelling

Author:

Escanciano Itziar A.1ORCID,Ripoll Vanessa2ORCID,Ladero Miguel1ORCID,Santos Victoria E.1ORCID

Affiliation:

1. FQPIMA Group, Department of Chemical and Materials Engineering, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain

2. Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo Majadahonda km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain

Abstract

Succinic acid (SA) is one of the most prominent C4 biomass-based platform chemicals that can be biologically obtained. This article verifies, for the first time, the possibility of producing succinic acid with fed-batch or repeated batch operations with Actinobacillus succinogenes in a resting state, that is, in the absence of a nitrogen source. In this work it is possible to optimise separately the stages of cell growth and production in the fed-batch or repeated batch modes, minimising the costs associated with the nitrogen source and facilitating the subsequent purification of SA. These experiments were carried out with xylose, the most abundant monosaccharide in hemicelluloses, with the results subsequently being compared to those obtained in equivalent operations carried out with cells in a state of growth. First, a cost-effective synthetic growth medium was proposed and successfully employed for SA production. Biocatalysts’ reutilisation showed that the bioprocess can be carried out successfully in repeated batch and fed-batch modes. The best mode for growing cells is repeated batch, achieving a maximum productivity of 0.77 g‧L−1‧h−1, a selectivity of 53% and a yield of 51% with respect to xylose consumed. In contrast, the fed-batch mode was found to be the most convenient mode with resting cell biocatalyst, reaching a maximum productivity of 0.83 g‧L−1‧h−1, a selectivity of 0.78 g‧g−1 and a yield of 68% with respect to the xylose consumed. In addition, by-product formation is significantly reduced when employing resting cells. An unstructured non-segregated kinetic model was developed for both biocatalysts, capable of simulating cell growth, xylose consumption, SA production and by-product generation, with successful estimation of kinetic parameters supported by statistical criteria.

Funder

Spanish Science and Innovation Ministry

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3