Abstract
The current fashion for healthy food and the increasing number of people with lactose intolerance make fermented vegetables increasingly important. On top of this, surpluses unused in the vegetable harvest can become a potential source of “green waste”. The use of fermentation and freeze-drying can result in a valuable, sustainable product that can solve the problems of spoiled vegetables and the need for refrigerated storage. Therefore, this study aimed to obtain sustainable dried fermented vegetables and to compare their selected physical and structural properties. Beetroot, carrot, and red pepper were selected for this purpose. These vegetables were subjected to a spontaneous lactic fermentation process. After the process, the vegetables were freeze-dried, and their structure and selected properties (color, dry weight, and the number of lactic acid bacteria) were determined. Fermented vegetables were found to differ from their raw sources in structure and color, the main discrepancies being shown by the b* factor (yellow-blue). Root vegetables had smaller pores of structure in the freeze-dried samples than red peppers. The freeze-drying process did not affect the number of bacteria. It can be concluded that both the fermentation and the freeze-drying processes affected the structure of the selected vegetables. All tested vegetables can be fermented and freeze-dried without major changes in color and microbiological properties and can be used as a potential source of lactic acid bacteria and health-promoting pigments, e.g., in the form of chips. In addition, their shelf life is extended.
Subject
Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献